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Motivated by lateral vibration suppression of a mining cable elevator, which is a load-moving cable
system, where the load moves along a viscoelastic guideway whose stiffness and damping coefficients
are unknown, we present event-triggered adaptive output-feedback boundary control design of a
hyperbolic PDE-ODE coupled system using the measurements at the PDE actuated boundary and the
ODE, where the PDE subsystem is a class of 2 x 2 coupled hyperbolic PDEs with spatially-varying
coefficients and on a time-varying domain, and a high uncertainty exist in the system matrix of
the ODE subsystem at the uncontrolled boundary of the PDE. A continuous-in-time observer-based
adaptive backstepping control law is designed where the control gains can be self-tuned to adjust
the system matrix of the ODE into a given target system matrix, based on which an observer-based
dynamic event-triggering mechanism is built and the existence of a minimal dwell-time is proved. The
asymptotic stability of the overall adaptive event-based output-feedback closed-loop system is proved
via Lyapunov analysis. In numerical simulation, the performance of the proposed controller is verified
in lateral vibration suppression of a mining cable elevator.

Keywords:

Hyperbolic PDEs
Adaptive control
Backstepping
Event-triggered control
Cable elevators

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Background

A load-moving cable system represents the prominent char-
acteristic of a mining cable elevator which is used to transport
a cage loaded with the minerals and miners between thousands
of meters underground and the surface via cables (Kaczmarczyk
& Ostachowicz, 2003). The undesirable mechanical vibrations are
often caused in the high-speed moving, because of the stretching
and contracting abilities of cables (Wang, Koga, Pi, & Krstic, 2018).
It would not only increase the risk of cable fracture but also
cause discomfort or injury to miners. Active vibration control
is one economic way to suppress the vibrations because the
main structure of the cable mining elevator does not need to be
changed.

Cable is one of the typical flexible mechanical structures
which are described by distributed parameter systems. Some
PDE boundary control strategies have been proposed to suppress
the vibrations in the flexible structures via boundary actuation.
An iterative learning control scheme was proposed for some
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flexible structures under spatiotemporally varying disturbances
in He, Meng, He, and Ge (2018). Boundary control to dampen the
oscillations of a disturbed flexible string system was proposed
in Zhao, Ahn, and Li (2019). A boundary control strategy was
designed to suppress the bending and twisting vibrations of the
rigid-flexible wing system in He, Wang, He, Yang, and Kaynak
(2020). Two boundary controllers were designed to restrain the
vibrations of a floating wind turbine connected with two flexible
mooring lines in He, Xiang, He, and Li (2020). A boundary control
law was presented to dampen the vibrations of a flexible hose
used for aerial refueling in Liu, He, Zhao, Ahn, and Li (2020). Ro-
bust adaptive vibration control of uncertain spatial flexible riser
systems with dead zone compensation was designed in Zhao,
Ahn, and Li (2020).

The vibration dynamics of the cable is originally described by a
second-order hyperbolic PDE, which can be converted into a class
of coupled transport PDEs (Auriol, Aarsnes, Martin, & Di Meglio,
2018; Coron, Vazquez, Krstic, & Bastin, 2013; Deutscher, 2017a,
2017b; Hu, Di Meglio, Vazquez, & Krstic, 2016; Vazquez, Krstic, &
Coron, 2011) in Riemann coordinates (Wang, Pi, & Krstic, 2018).
For the load-moving cable system, the dynamics are modeled
by time-varying-domain coupled transport PDEs coupled with
an ODE at the uncontrolled boundary, where the PDE describes
the vibration dynamics of the cable of time-varying length and
the ODE models the lumped parameter dynamics of the payload
(cage), and the coupling between the PDE and the ODE is related
to the kinematics and dynamics relationship between the cable
and payload. Based on such a distributed parameter system,
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boundary control strategy was proposed to suppress the axial vi-
brations of a mining cable elevator in Wang, Pi, and Krstic (2018).
For the lateral vibrations in the mining cable elevator, a different
excitation source is interaction between the cage and the flexible
guides (Wang, Pi, Hu, & Gong, 2017). The elastic support of
flexible guides was approximate as a spring-damping system,
i.e., a viscoelastic guide, in Terumichi, Ohtsuka, and Yoshizawa
(1997) and Zhu and Xu (2003), where the equivalent stiffness and
damping coefficients are difficult to be known exactly. It leads to
uncertainties existing in the parameters of the system matrix of
the ODE describing the cage dynamics.

1.2. Adaptive boundary control of coupled hyperbolic PDEs

Adaptive strategies are widely used in control of various types
of PDEs with unknown system parameters, including the con-
sidered coupled hyperbolic PDEs. In Anfinsen and Aamo (2017)
an adaptive boundary control design of coupled hyperbolic PDEs
with uncertain boundary and spatially-varying in-domain coeffi-
cients was presented. In Anfinsen and Aamo (2018), two adaptive
boundary controllers of coupled hyperbolic PDEs with unknown
in-domain and boundary parameters were proposed using identi-
fier and swapping design respectively. Adaptive boundary control
of a hyperbolic PDE-ODE coupled system, where the unknown
parameters exist in the ODE, was considered in Wang, Tang, and
Krstic (2020a, 2020b). It is worth reminding that in vibration
control of a compliant mechanism whose first-order nature fre-
quency is low, such as the cable system, the transient of adaptive
learning in the control input may arouse undesired vibrations,
even resonance.

1.3. Sampling scheme in PDE control

A new adaptive estimation with sampling update instants
consisting of a least-square identifier and regulation triggers is
proposed for parabolic PDEs (Karafyllis, Krstic, & Chrysafi, 2019),
developed from ODE cases (Karafyllis, Kontorinaki, & Krstic, 2019;
Karafyllis & Krstic, 2018b). It has advantages of guaranteeing
exponential convergence of the state to zero, finite-time conver-
gence of the estimate to the true value, and allowing using the
certainty-equivalence approach. The resulting adaptive certainty-
equivalence controller consists of sampling adaptive estimates
and continuous plant states, i.e., the triggers only staying in the
adaptive update law. Even though it can release the adaptive
learning transient problem mentioned above, the use of the con-
tinuous states, i.e., vibration states of the cable, in the control law
makes it unsuitable for the mining cable elevator, because the
hydraulic actuator (head sheaves and hydraulic cylinders) in the
elevator is massive and barely keeps up with the control law with
high-frequency vibration states.

Some sampling schemes applied in the control input are po-
tential solutions to the above problem. Designs of sampled-data
control inputs of parabolic PDEs were presented in Fridman and
Blighovsky (2012), Karafyllis and Krstic (2018a), and those of
hyperbolic PDEs were proposed in Davo, Bresch-Pietri, Prieur, and
Di Meglio (2018) and Karafyllis and Krstic (2017). Compared with
the periodic sampled-data control which may generate unnec-
essary actions of the massive actuator, event-triggered control,
where the input of the massive actuator is only changed at the
necessary times which are determined by an event-triggering
mechanism of evaluating the operation of the elevator, is more
feasible for the mining cable elevator, from the point of view of
energy saving.

Most of current designs of event-triggering mechanisms
(ETMs) are for ODE systems, such as Girard (2015), Marchand, Du-
rand, and Castellanos (2013), Seuret, Prieur, and Marchand (2014)
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and Tabuada (2007). There are few studies about event-based
control of PDE systems. Selivanov and Fridman (2016) and Yao
and El-Farra (2013) proposed event-triggered control schemes
for distributed (in-domain) control of PDEs. For the boundary
control of PDEs, an event-triggered control law was originally
proposed in Espitia, Girard, Marchand, and Prieur (2016a, 2016b)
for hyperbolic PDEs with dissipativity boundary conditions. After-
wards, event-triggered boundary control of a reaction-diffusion
PDE was also proposed in Espitia, Karafyllis, and Krstic (2021). A
state-feedback event-based boundary controller of 2 x 2 coupled
linear hyperbolic PDEs was first proposed in Espitia, Girard, Marc-
hand, and Prieur (2018), and the observer-based event-triggered
boundary control of 2 x 2 coupled linear hyperbolic PDEs was in
further developed in Espitia (2020). An event-triggered boundary
control of 2 x 2 coupled hyperbolic PDEs sandwiched by two
ODEs was proposed in Wang and Krstic (2021). However the
above-mentioned results focus on a fixed-domain PDE with con-
stant and completely known parameters, which is not suitable for
the problem considered in this paper, especially the time-varying
property of the PDE domain and the potential learning transition
under the unknown parameters need to be in further considered
in the event-based control system design.

1.4. Contributions

e Compared with Anfinsen and Aamo (2017), Anfinsen and
Aamo (2018) and Anfinsen and Aamo (2019) about adaptive
control of coupled hyperbolic PDEs in the continuous-in-
time form, this paper proposes an event-triggered version
of adaptive control of this kind of PDE system.

e As compared to Espitia (2020), Espitia et al. (2018) and
Wang and Krstic (2021) which designed event-triggered
backstepping control for 2 x 2 hyperbolic PDEs on a fixed-
domain PDE with constant and completely known plant pa-
rameters, the time-varying domain and the spatially-varying
coefficients in the 2 x 2 hyperbolic PDEs, and the highly
uncertain ODE coupled at the uncontrolled PDE boundary,
make the control design in this paper more challenging.

e This is the first result about adaptive event-triggered back-
stepping boundary control of coupled hyperbolic PDEs, with
application into lateral vibration control of a mining ca-
ble elevator moving along viscoelastic guideways whose
stiffness and damping coefficients are unknown.

1.5. Organization

The rest of the paper is organized as follows. The problem
formulation is shown in Section 2. An observer is designed to
estimate the PDE states in Section 3. The design of an observer-
based adaptive backstepping controller is presented in Section 4.
An observer-based event-triggering mechanism and the proof of
the existence of a minimal dwell-time are presented in Section 5.
The stability of the resulting adaptive event-based closed-loop
control system is proved in Section 6. Simulation test in a mining
cable elevator model is conducted in Section 7. The conclusion
and future work are presented in Section 8.

Notation. Throughout this paper, the partial derivatives and total
derivatives are denoted as: fi(x,t) = %(x, t), filx,t) = g—ft(x, t),
oo =2 fe) = G2,
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2. Problem formulation

The load-moving cable is originally modeled by a wave PDE-
ODE system on a time-varying domain (Wang, Koga, et al., 2018;
Wang, Tang, Pi, & Krstic, 2018), which can be rewrittenasa 2 x 2
coupled transport PDE-ODE system on a time-varying domain in
the Riemann coordinates (Wang, Pi, & Krstic, 2018). Our control
design is based on a general 2 x 2 coupled transport PDE-ODE
system with spatially-varying coefficients and on a time-varying
domain, and the application into vibration control of a mining
cable elevator, which is a representative of the load-moving ca-
ble system, will be conducted in Section 7, where the physical
meanings of the considered PDE plant will be presented.

The general plant considered in this paper is

X(t) = AX(t) 4+ Bw(0, t), (1)
z(0,t) = CX(t) 4+ p1w(0, t), (2)
zi(x, t) = —q1(x)zx(x, t) + c1(x)z(x, t) + ca(X)w(x, 1), (3)

we(X, t) = Q(X)wy(x, ) + c3(x)z(x, ) + ca(x)w(x, t), (4)
)

w(l(t), t) = U(t), (5

with x € [0, [(t)],t € [0, co). The vector X(t) € R" is an ODE
state and the scalars z(x, t), w(x, t) are PDE states. Eq. (5) is the
boundary condition with control input U(t) to be designed, which
represents the boundary control force for vibration suppression in
a load-moving cable system. There always exists another control
input for moving regulation in the load-moving cable system,
which is not the design task in this paper, and the proximal
reflection term arising from converting the wave PDE to the
2 x 2 coupled transport PDE is considered as compensated by this
motion regulation control input. For the example of the mining
cable elevator in the simulation, the proximal reflection term
z(I(t), t) is compensated by the motion regulation control force
at the drum (see Figure 1 (a) in Wang, Koga, et al. (2018)), and
the control design in this paper acts as a vibration control force
applied at the head sheave.

Spatially-varying transport speeds q;(x), gz(x) € C! are posi-
tive and c¢;(x), c(x), c3(x), c4(x) € C° are arbitrary. The constant p;
is nonzero. The matrix C € R™*" is arbitrary. The input matrix B €
R™1 and the system matrix A € R™" with unknown parameters
satisfy the following assumptions.

Assumption 1. The matrices A, B are in the form of

0O 1 0 0 0 0
0 0 1 0 0 0
A= : B=| o (6)
00 0 0 - 1 ,?
&1 & &8 -+ 8n-1 &n n

where the constants g1, g2, &3, ..., 8—1, & are unknown and
arbitrary, and their lower and upper bounds are known and
arbitrary. The constant h, is nonzero and known.

Assumption 1 indicates that the ODE is in the controllable
form, which covers many practical models, including the payload
dynamics in the load-moving cable systems.

Choose a target Hurwitz matrix

O 1 0 o0 - 0
0 0 1 0 - 0
0O 0 0 o 1
gl gZ §3 gn—l gn

where the coefficients g, g2, g3, ..., 811, & are determined by
the user according to the desired performance for the specific
application.
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According to Assumption 1 and (7), we know that there exists
a unique, though unknown, row vector

Kixn = [ki, ..., kil (8)
such that

An=A+BK 9)
and

gi=g+hk, i=12,...,n (10)

By virtue of (10), while the k;’s are unknown, the lower and upper
bounds on the k;’s, i.e., [k;, k], i =1, 2, ..., n are known because
the lower and upper bounds of the system matrix coefficients g;’s
are known in Assumption 1, and the target matrix coefficients g;’s
are chosen by the user.

The time-varying domain, i.e.,, the moving boundary [(t) is
under the following two assumptions.

Assumption 2. The function I(t) is uniformly bounded, i.e., 0 <
I(t) < L, Vt > 0, where L is a positive constant.

Assumption 3. The function l(t) is bounded as
[I6)] < vm < min {g1(x), g2(x)}, (1)
where vy, is the maximum velocity of the moving boundary.

The limit of the speed of the moving boundary in Assump-
tion 3 is to ensure the well-posedness of the plant (1)-(5) ac-
cording to Gugat (2007a, 2007b).

The complete set of the plant parameters is given by

& =1{P1, 91, G2, C1, €2, €3, C4, A, B, L, v}, (12)
where x is omitted for conciseness.

3. Observer

To estimate the PDE states z(x, t), w(x, t), which usually can-
not be fully measured in practice but are employed in the con-
troller, an observer using the measurements X(t), z(I(t), t) is
formulated as

X(t) =AX(t) + Bi(0, t) + Bw(0, t), (13)
2(0, t) =CX(t) + prw(0, t), (14)
Ze(x, t) = — u(X)2(x, £) + c1(0)2(x, £) + c2(x)(x, t)

+ Wa(x, I(6))(z(U(¢), £) — 2(I(t), t)), (15)

We(X, £) =qa(X)Wx(x, t) + c3(X)2(x, t) + ca(X)(x, )
+ Ws(x, I(£))(z(I(t), £) — Z(I(t), t)), (16)
w(l(t), t) =U(t), (17)

where (13) is exactly the ODE (1) with w(0, t) = w(0, t)+w(0, t),
providing the measured signal X(t) into (14). It should be noted
that (13) is not computed online as a part of the observer. The
observer gains ¥,(x, I(t)), ¥s(x, I(t)) are to be determined. As we
indicate, because the ODE state X is available, the observer (14)-
(17) is only to estimate the PDE states. Let us denote the observer
error states as

(Z(x, ), W(x, £)) = (2(x, t), w(x, t)) — (2(x, t), W(x, t)). (18)

According to (2)-(5) and (14)-(17), the observer error system is
obtained as

Z(0,t) = p1w(0, t), (19)
z(x, t) = —q1(x)zx(x, ) + c1(X)Z(x, 1) + c2(X)w(x, 1)
— Wa(x, (6)z(I(t), 1), (20)
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we(x, t) = Q(X)Wx(X, t) + c3(X)2(x, t) + ca(X)w(x, t)
= Ws(x, 1(£))z(I(t), t), (21)
w(l(t), t) = 0. (22)

The observer gains Ws(x, I(t)), ¥5(x, (t)) are to be designed to
ensure convergence to zero of the observer errors defined in (18).
Next, we postulate the backstepping transformation

1w
2x, £) =i(x, £) — f 3(x, y)a(y, t)dy

l(t)v B
- / $(x.Y)BO. )y, (23)

1

a)(xs t) =IB(X! t) - W(X, y)&(y’ t)dy

t)v 5
- / F(x. 9B, t)dy (24)

to convert the original observer error system (19)-(22) to the
following target observer error system:

@(0,t) = p1B(0. 1), (25)
a(x, t) = —qu(X)ax(x, t) + cr(x)a(x, t), (26)
Be(x. t) = q2(x)Bu(x, 1) + ca(x)B(x. 1), (27)
B(t), t) = 0. (28)

Even though the integration interval [0, [(t)] is time-varying, the
kernels in (23), (24) need not include the argument [(t) because
the extra terms in which I(t), I(t) appear in the course of calcu-
lating the kernel conditions will be “absorbed” by the observer
gains ¥,(x, I(t)), ¥s(x, I(t)). By matching (19)-(22) and (25)-(28)
via (23), (24), we obtain PDE conditions on the kernels ¢(x, y),

P(x, ), ¥(x, y). ¥(x,y), as follows,

Jx,x) = %’;x)w(o ¥) = P10, y), (29)

— @i Wy(X, ¥) + Ga(x)Px(x, )

+ s()p(x.y) + (calx) — a1(y) — g1’ ) (x.y) = 0, (30)

— ()%, ¥) — G1(V)Py(x. ¥)

+ (@) — a) — ¢’ 0))eX, ¥) + 2(x)¥(x,y) = 0, (31)
©0)by(x, ¥) — 41 (X)px(x, ¥)

+ (c1(x) — cay) + 6’ )P(x, ¥) + ()P (%, y) = 0, (32)

BV, ) + G0y (%, y) + cs(x)(x, ¥)

+ (calx) — cay) + @2 )V (x, y) = 0, (33)

v 1. Y ca(x)

¥(0,y) = p—]¢( o) = T (34)

The equation set (29)-(34) is well-posed because they belong to a
general class of kernel equations whose well-posedness is proved
in Theorem 3.2 of Di Meglio, Bribiesca, Hu, and Krstic (2018). Then
the observer gains are then deduced as

Wo(x, (1)) = IE)p(x, () — qx(I(E)p(x, (1)), (35)
Ws(x, (1)) = It ) (x, (1)) — qi (IO (x, [1)). (36)
Lemma 1. For the observer error system (19)-(22), the state esti-

mation errors Z(x, t),
L
ming<x<( {q2(x)}

w(x, t) become zero after t; = o1 T

mmO<x<L(Ql(

Proof. According to the target observer error system (25)-(28)
and the result in Hu et al. (2016), we know that a(x, t), B8(x, t)
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become zero after the finite time tr. Applying the Cauchy-
Schwarz inequality into (23), (24), the proof of this lemma is
complete. H

The finite time in which Lemma 1 establishes that the observer
errors vanish is only dependent on the plant parameters and not
on the controller parameters. In the next section, we first design a
continuous-in-time adaptive control law to stabilize the coupled
transport PDEs coupled with a highly uncertain ODE at the uncon-
trolled boundary. Then we design an event-triggering mechanism,
which uses the signals from the observer and includes an internal
dynamic variable and which produces triggering times based on
evaluating the size of the deviation of the control input applied
over the interval between the triggers from the continuous-in-
time control signal. The combined continuous-in-time adaptive
controller and the event-triggering mechanism constitute the
adaptive event-triggered boundary controller.

4. Adaptive continuous-in-time control design

In this section, we conduct a state-feedback control backstep-
ping design, with the intent of feeding into this full-state designs
the observer states from the observer in the previous section. In
other words, in this section we design an observer-based output-
feedback controller which we then make adaptive. The output
error injections z(I(t), t), w(0, t) in the observer are regarded as
zero in the state-feedback design, and then the separation princi-
ple, which is verified by the fact that the stability of the observer
error system is independent of the control design according to
Lemma 1, is applied in the stability analysis of the resulting
closed-loop system.

4.1. Backstepping

Two transformations are used to convert (13)-(17) to a target
system, with purposes of removing the couplings in the PDE
domain and making the ODE system matrix Hurwitz.

(a) The first transformation to decouple PDEs
We postulate the backstepping transformation

ax. t) = 2(x, 1) f Jx. Yy, t)dy — f Gl Y. O)dy, (37)
0 0

Blx. t) = ix. t) — / F(x. Y200, )y — / N(x. )i, t)dy.
0 0

(38)

to convert (13)-(17) to the following system
X(t) = AX(t) + BB(0, t), (39)
(0. t) = CX(t) + p1B(0. ), (40)
e(x, £) = —q1(x)a(x, t) + c1(x)a(x, £) — J(x, 0)q1(0)CX(t), (41)
Bi(x, t) = G2(X)Bulx, t) + ca(X)B(x, 1) — F(x, 0)q1(0)CX(t),  (42)

A I(t)
B(t), t) = U(t) - f F(I(t), y)2(y, t)dy
0

I(t)
- f N(I(E), y)ib(y. £)dy. (43)
0

By matching (39)-(43) with (13)-(17) via (37), (38), we obtain the
conditions of the kernels J(x, y)G(x, y)F(x, y)N(x, y), as follows,

__ e 12(0)
G x) = 0 + g1 O = S 0 G (44)
Q2(¥)Gy(x, ¥) — q1(x)Gx(X, y)

— VX, ¥) + (€1(x) — caly) + 42’ (1))G(x, y) = 0, (45)

Q1 y(x. ¥) + q1(x)x(x, ¥)
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+ G, y) + () — a(x) + ¢’V (x,¥) =0, (46)
—c3(x) q1(0)p1
PO =0t a0 = FE O oy 47)
G2(VINy(X, ¥) + q2(x)Nx(X, )
— CY)F(x, y) + (ca(x) — cay) + q2'(¥))N(x, y) = 0, (48)
Q1(YIFy (%, ) — Q2(x)F(, ¥)
+ c3(VIN(X, ) + (1) — ca(x) + q1' ))F(x, y) = 0, (49)

which is a special case of (60)-(73) in Wang and Krstic (2020)
where (61) and (68) in Wang and Krstic (2020) hold naturally
here because the PDE states are scalar in this paper. Please refer
to Lemma 1 in Wang and Krstic (2020) for the well-posedness of
(44)-(49).
(b) The second transformation to form a stable ODE

We postulate the backstepping transformation

fi(x, t) = B(x, t) — / N(x, y; K(£)B(y, t)dy — D(x; K(£)X(t) (50)
0

where I%( t) € R™" is the estimate of the ideal control gains and
will be shown later. The conditions on the kernels N(x y; K( ),
D(x; K(t (t)) are to be determined next. The inverse transformation
is postulated as

Blx. t) = fi(x, t)— / Ni(x, y: K(0))iy, t)dy — Dy(x; K(£)X(t) (51)
0
where N,(x v; K(t)) Dy(x; K(t)) are kernels which can be deter-
mined after the determination of N(x v; K( ), D(x; I<( ).

Through the transformation (50), we convert (39)-(43) into
the following target system:

X(t) =AnX(t) — BK(£)X(t) + BA(0, t), (52)
&(0, ) =(C + p1D(0; K(£)))X(t) + p17(0, t), (53)
ar(x, t) = — qu(x)a(x, t) + c1(x)a(x, t) — J(x, 0)q1(0)CX(t),

(54)
A, £) =q(X)(x, £) + ca(¥IA(x, £) — K(OR(X, £)
+ (Dl REeDBR(E) = K(ODgg (6 K(D) X(0), (55)
n(l(t), t) =0, (56)
where
K(t) = K — K(t), (57)
and where

Rix. £) = f R (%, y: K(EDBOY, Oy
X n n y n "

= [ iy K(t))[ﬁ(y,r)— | v as ki o
0 0

— Di(y; 1%(r))X(r)]dy. (58)

The partial derivatives appearing in (55)-(58), respectively, are
Di(x: K1) = PEHD) and Ng(x,y; K(1) = LKD) By
matching (39)-(43) and (52)~(56) via (50), the conditions of the
kernels N(x, y; K(t)), D(x; K(t)) in (50) are determined as

D(0; K(t)) = K(t), (59)

— qa(X)D'(x; K(1)) + D(x; K(£))(An — ca(x) — BK(t))

+ F(x, 0)q1(0)C — / N(x, y; K(6))F(y, 0)q:(0)Cdy =0, (60)
0

BNy (x, y; K(t))
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+ Ga(ON(x, y; K(£)) + ¢2'(v)N(x, y; K(£)) = 0, (61)
q2(0)N(x, 0; K(t)) = D(x; K(t))B. (62)

The equation set (59)-(62) is a transport PDE-ODE coupled sys-
tem consisting of the transport PDE (61) with the boundary
condition (62) on {(x, y)|0 <y < x < I(t)} and the ODE (60) with
the initial value (59) on {0 < x < [(t)}. It should be noted that
K(t) is a parameter rather than a variable in the transport PDE
(61), (62) with respect to the independent variables x,y and in
the ODE (59), (60) with respect to the independent variable x. In
the study of well-posedness of (59)~(62), the transport PDE state
N(x, y; K(t)) can be represented by its boundary value D(x; K(t))B.
Substituting the result into ODE (60) to replace N(x, y; K(t)), the
unique and continuous solution of the first-order ODE D(x; K(t))
(60) can be obtained. Then the unique and continuous solution
of the transport PDE N(x, y; K(t)) in (61), (62) is obtained be-
cause of the well-defined and continuous input signal in (62).
Following Section 2.4 in Wang, Krstic, and Pi (2018), the kernels
Ni(x, y; K(t)), D;(x; K(t)) in the inverse transformation can then
be determined.

4.2. Adaptive update laws

The objective in this section is to build adaptive update laws
to obtain self-tuning of the control gains K(t) = [k{(t), ..., kn(t)],
where normalization and projection operators are used to guar-
antee boundedness, as is typical in adaptive control designs. The
adaptive update law K( )= [k], .. kn] is of the form

ki(t) = Projy g (w(0) k(o)) (63)

While projection is applicable for arbitrary convex sets, the set
within which the control gain vector K should reside in a hyper-
rectangle or, as is colloquially said, the estimate K(t) should be
maintained within box constraints. Given the hyperrectangular
set for the feedback gains, for any m < M and any r, p, Proj;, y
is defined as the operator given by

0, ifp=mandr <0,
Proji,py (r,p) =4 0, ifp=Mandr >0,
r, else.

So, the projection operator is to keep the scalar components of
parameter estimate vector K(t (t) = [k1, .. kn] bounded within
the interval [k;, k;]. The bounds k; and k; are determined from the
bounds on the unknown parameters in A using Assumption 1,
as well as (7) and (10). We choose the parameter update rate
functions t; in (63) as

I
1+ () —

[r1(), ..., w(0)]" = |:—2X(t)BTPX(t)

Mmmg(t)
I(t)

+ 1, / e™A(x, O)X(t)B"D(x; I%(t))de], (64)
0

where my(t) < 0, a dynamic variable in the event-triggering
mechanism, will be defined in next section, and the adaptation
gain matrix is

s Yen's (65)

and where £2(t) is defined as

I = diag{)’n, cee

I(t)
Q(t) =X(t)PX(t) + %ra/ e h(x, t)*dx
0

1 I(t)
+ frb/ e~ *§(x, t)2dx. (66)
2 J
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The determination of the positive constants 8, r, and r, will be
shown in the next section. The matrix P = PT > 0 is the unique
solution to the Lyapunov equation

PAn +ATP = —Q (67)

for some Q = QT > 0. It should be noted that P is known since A,
is known (chosen by the user). We introduce the normalization
£2(t) + 1 in the denominator in (64) in order to keep the rate
of change of the parameter estimate IA<(t) bounded, which will
be used in estimating a minimal dwell-time in ETM and the
stability analysis of the closed-loop system. The functions 7(x, t)
and a(x, t) in (64)-(66) can be represented by the observer states
through (37), (38), (50). The complete set of positive design
parameters in the parameter update law is defined as

Ca={It,8,7a, Ty, m}. (68)

The update law designs in this section will be chosen with the
help of a Lyapunov analysis in Section 6.

4.3. Continuous-in-time control law

The continuous-in-time adaptive backstepping control law is
derived in this section. For (56) to hold, using (43), recalling (38),
(50), we get

Ie) _ R N
ut)= M(I(t), x; K(t))2(x, t)dx + D(I(t); K(t)X(t)
0

I(t)
+ / N(I(t), x; K(6)W(x, t)dx (69)
0
where M(I(t), x; K(t)), N(I(t), x; K(t)) are

1w .
M(l(f),X;K(t))=F(l(t),x)—/ N(I(t), y; K(¢))F(y, x)dy,  (70)

N(I(t), x; K(£)) =N(I(t), x) + N(I(t), x; K(1))

[(t),\ R
- f R(IE). y: RIONG. x)dy. (71)

In the output-feedback adaptive backstepping control law (69),
the states w(x, t),Ai(x, t) are from the observer (14)-(17). The
kernels J, F, G, N, N, D are derived from the backstepping process
in this section. The state X(t) is the measurement. The row vector
K(t) is the adaptive estimate defined in (63), (64).

5. Event-triggering mechanism

In this section, we introduce an observer-based event-
triggered control scheme for stabilization of plant (1)-(5). It relies
on both the continuous-in-time adaptive control signal U(t) in
(69) and a dynamic event-triggering mechanism (ETM) which
determines triggering times t; (integer k > 0 and t, = 0) when
the control signal is updated, and between updates the control
signal is held constant in a zero-order-hold (ZOH) fashion. In
other words, the event-triggered control signal Uy(t) is the frozen
value of the continuous-in-time one U(t) at the time instants ty,
ie,

Ug(t) = U(t),  t € [tk, berr). (72)
Inserting Uy(t) into (17), we obtain
w(l(t), t) = Ug(t). (73)

A deviation d(t) between the continuous-in-time adaptive control
signal and the event-based control signal is given as

d(t) = U(t) — Ug(t). (74)
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Then (73) can be written as
w(l(t), t) = U(t) — d(t). (75)

Recalling the backstepping transformations and designs of U(t)
in Section 4, the target system becomes (52)-(55) with the right
boundary condition

A(I(t), ) = —d(t). (76)

The ETM to determine the triggering times of U, is designed, as
in Espitia et al. (2018), using the dynamic triggering condition

fipr = inf{t € RY[t > g]d(t)* > 6D(t) — my(t)}, (77)

where the internal dynamic variable mg(t) satisfies the ordinary
differential equation

ma(t) = — nmg(t) + Aqd(t)* — o @(t) — k1&(I(t), t)
— 120(0, t)? — k34(0, t)? (78)

whose initial condition my(0) should be chosen negative, and
which is driven by the norm

() = IX(OF + 17, OI* + &, Ol (79)

The signals in (79) can be replaced by the observer states via
(37), (38), (50). The complete set of event-triggering mechanism
parameters is as

Ce =1{0,1, Ag, 0, K1, K2, K3} (80)

These positive parameters are to be determined later.

The reason for introducing an internal dynamic variable mg(t)
into the event-triggering condition (77) is that the changing rate
d(t) of the deviation between U(t) and Uy(t), up on which the
dwell-time relies, includes as the last three terms in (78), the
boundary states a(I(t), t) 7(0, t), @(0, t), whose integration should
be incorporated into the event-triggering condition (77) to avoid
the Zeno phenomenon. The internal dynamic variable mgy(t) is
kept negative by the choice of 6. The explanation in this para-
graph formalized through the following three lemmas.

Lemma 2. For d(t) defined in (74), there exists a positive con-
stant A, dependent only on the plant parameters ¢, and the design
parameters g;'s in Ay, in (7), such that

d(y? sxa(cp,g‘f)<d(t)2 + a(l(t), t)* + 7(0, t)* + &(0, t)?
+ m3(§p7 ;a’ gl)”&(v t)”2 + m3(§[)7 {ll? g_-l)”;](v t)”2
+ ms3(p, ca,g,-)|><(t)|2> (81)

for t € (ty, tyr1), where mjs is a positive constant dependent only
on the plant parameters ¢,, the adaptive law parameters ¢,, and the
design parameters g;'s in An,.

Proof. The proof is shown in Appendix A. ®

In the proof of Lemma 2 and the following text in this paper,
a constant followed by (-) denotes a constant that depends only
on the parameters in the parentheses. For conciseness, after the
first appearance of the constant, (-) will be omitted when it is
unnecessary.

Lemma 3. Choosing
o
6 < —, 82
= (82)
for the internal dynamic variable my(t) defined in (78), it holds that
my(t) < 0.
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Continuous- Control signal at last
in-time d(t) L - trlggen?/gl( :u)ne
control signal r @k
Target system matrix +
U(r) mty [ETM dynamic 1 [ An (7 U@ —_————
_ variable m(f) - _ !_ . ]I
Triggering (78) Adaptive I — X() |
e | L update law| |
Triggering | condition K() | I
Eme a7 (63).(64) Continuous-in-time I |
controller (69) | :
|
() Sigqal | |
@(1)in | l
ETM d b : :
Adaptive event-triggered (79) Observer | |
control in/f)li[) Udtir1) (14)-(17) z(I(0).t) J|
| F——— R
ZOH Plant (1)-(5 f
( ) ( ) Measurements

Fig. 1. Block of the event-based adaptive closed-loop control system.

Proof. The proof is shown in Appendix B. ®

Lemma 4. For some k1, K, k3, there exists a minimal dwell-time
between two triggering times, which is equal to or greater than a
positive constant Ty, Which depends only on the parameters of the
plant and the choices of the design parameters.

Proof. Introduce a function ¥ (t)
_d(eY + 3my(t)
0@ (t) — 3ma(t)

which is proposed in Espitia et al. (2018). We have {(tyy1) = 1
because the event condition in (77) is triggered, and ¥ (t;) < 0
because of my(t) < 0 (Lemma 3) and d(t;) = 0. The function
Y(t) is continuous on [ty, tyr1] due to the continuity and well-
posedness of this class of 2 x 2 hyperbolic PDE-ODE system
according to Di Meglio et al. (2018). By the intermediate value
theorem, there exists t* > t; such that y(t) € [0, 1] when t €
[t*, tys1]. The minimal Ty, can be found as the minimal time it
takes for y(t) from O to 1, i.e., the reciprocal of the absolute value
of the maximum changing rate of (t). Taking the derivative of
(83), recalling Lemma 2, (78), (79), choosing

¥(t) (83)

K12 max{2ka(§p, &) 20)\17(;17)}, (84)
Kz > max{2xq(gp, &)y 204p(Ep)}, (85)
K3 > max{2q(gp, &)y 204p(&p)}, (86)

for some positve X, given in Appendix C, through a calculation
process shown in Appendix C, we get

Y(6) < (e +nay(6) + s (87)
with positive constants

ny = %Aa +00,(5). (88)
Ny = 14 Aa(&p, &) + Aa +02p(5p) + 1

+ filo, o(&p, Las &), 0), (89)
n3 =1+ %)hd + Aa(8p, &) + )\a(;p’gi)m;(cp’ o. 81) + 1, (90)

where the positive o only depends on the plant parameters,
adaptive law parameters, and design parameters g;'s, and where

f] — 122 (gp» Ca, gz) - %‘77 lfo < 29#0(§p7 {aygi)y
0, if o > 26010(&p, Las &i)-

Then, it follows that the least time needed by ¥ (t) to go from 0
to1is

1
Tomin=——""—"">0,
min n+ M + 113 >
because the maximum changing rate (t) is ny 4+ ny + ns for
Y(t) € [0, 1] according to (87). The proof of this lemma is
complete. H

6. Stability analysis of the closed-loop system

The expression of the final adaptive event-triggered control
law Uy is
() _ R
Ud(t) = M(I(tx), x; K(tx))2(x, ti)dx
0

I(ty) . R
+ / k N(I(t), x; K(t))i(x, t)dx + D(I(t); K(6e))X(t) (91)
0

for t € [, tyt1), recalling (69) and (72). The triggering times t;
(for integer k > 0) are determined by the ETM in (77), (78). In
(91), Z, w are states from the observer (14)-(17), K is the adaptive
update law (63), (64), and X is the ODE measurement. The scalars
I(ty) are the values of the time-varying function I(t), which is
known ahead of time, at the times t, the functions M, N are given
in (70), (71), and D is defined in (59)-(62). The block diagram of
the event-based closed-loop system is shown in Fig. 1.
Lemma 5. For all initial values (&(-, 0), 7(-, 0)) € L*(0, L), X(0) €
R", mg(0) < O, the event-based target system (52)—(55), (76) is
asymptotically stable in the sense of lim_, oo(||&(-, O)|I2 17, O)[|*+
IX(6)[* + [ma(£)]) = 0.

Proof. Define g, = mino<x<t{q1(x)}, ) = Maxozx=t{Ig; (¥}, g2 =

Ein05x5L{QZ(X)}- q,Z = majOstL“q/z(x)”v q = milX0§x5L{QI(X)}Y
2 = maxg<1{q2(X)}, € = maxo«x<i{lc1(X)]}, G4 = MaXg<x<;
{lca(x)1}.

Step 1: Choose the Lyapunov function as
1- -
V(t) =In (14 2(t) — pmmy(t)) + §1<(t)rc—11<(t)7 (92)

where the terms K (t), my(t) are related to the adaptive law and
ETM. Because of my(t) < 0 (Lemma 3), we have that 1+ £2(t) —
ummg(t) > 0. According to (66) and (79), we obtain

p1@(t) < £2(t) < 2 P(t), (93)
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with positive w1, uy as

1 _
M1 :E mln{ra, rpe BL’ )Lmin(P)}s (94)

1
na =3 max{ree’", rp, Amax(P)}, (95)

where Apnin and Anax denote the minimum and maximum eigen-
values of the corresponding matrix. Taking the derivative of (92)
along (52)-(55) with (76) and (78), and applying the Young and
Cauchy-Schwarz inequalities, through a process in Appendix D,
we arrive at

7

. 1 ‘ _ -
(OEFS Q(t)_ummd(t)[—(gxmm(Q) (0D

1 . _
- qu(omf ICI> — wmo — umx302> IX(t)?

8|PB|?
)Lmin(Q)

1 1— 1
— |ra| =802 — G — =, | €™ — pumo / A(x, t)Ydx
L 2 = 2 0

1 .
— | z(@o) - Drye !t — Mmkl]&(l(f), t)’

_r L §—01 1_a e~ fmA(x t)2dx
b 211 1 B B MmO A alX,

1
<5(h(0)ra — (q1(0)r + famic3)p; — - Mm’Q)ﬁ(Os t)°

I(t) . .
ra / e™ij(x, t)(f((t)qut)(x; K(£)X(t) + K(DR(x, t)) dx
0

1__
— (umxd — 5@+ vm)rae‘“> d(ty’ + Mm’?md(t)] (96)
where j = maXOSXSL{U(Xs 0)|}v D = max&fl},‘(t)fl_q
{IC + p1D(0; k(t))l}, and (76), (63), (64), (53) have been used.
Inserting (82) into (84)-(86) to replace 6 by f—d adding addi-
tional condition

Ad > 1,

the conditions of the design parameters in adaptive event-
triggered backstepping control systems are summarized as

min{k, k2, K3} > Max{2iq, 204,}, (97)
26+q, 261+1+4q,
(S>max{ c4+q27 at +q1}’ (98)
% a
7
,)\_ .
< _ 8 ;TIIH(Q) _ =, (99)
q1(0)D? + 5q1(0)2LJ2 |C|
T 2 (q (0)rpp* + 8 |PB|2) (100)
> — )
‘ QZ(O) ! be Amin(Q)
min 7k (Q)
< ———— | =Ami
/‘Lm o + K3D2 8 min

1 _
— T (Q1(0)D2 - 5Q1(0)2L]2 |C|2)],

o (3002 - & — 3a3) (%@5 —G-1-dd)e

%QZ(O)Ta

o o
— q:(0)rp} — g IPBI?

)

K2 + K3P1
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1 SL
5(q1 — vm)rpe
2\d1 K:n b } (101)
SL
Ay > max] @2 F vmlra” | (102)
2pm
o<, (103)

where o, n are free parameters. Applying the Young and Cauchy-
Schwarz inequalities, recalling (58), we get

© ; ;
— 1 / ™ 7(x, )(KDg X () + KR(x, t))dx
0

= max Vct \/>)Lb (&p> 8, Ta, T, /’LTHagl)(|X( )|2+ ”;7”2) (104)

ie{1,
where the positive constant Ay(&p, 8, 'q, T, hm, &) > 0 only de-
pends on the plant parameters £, and the choices of 14, 1p, 8, im
and g;'s. Choosing parameters as (97)-(103) and inserting (104),
the inequality (96) becomes

: 1
YO = g0

+ 70, t)* + [IA(,

)\c@p, e, 8, Ta, Th, M, gi)(|x(t)|2

Ol + d(t)?)

[mMg(t) [_
)12 + &l(t),

+ wmnma(t) + ieglgxn}{yci}\/ﬁkb(lx(t)lz + 1A(, t)llz)}

ty +lla(,

where the constant Ac(¢p, &, 8, T'a, v, im, &) > 0 only depends
on the plant parameters ¢,, the design parameters g's in A, the
event-triggering mechanism parameters ¢, and 8, ry, 1y, by iD
the adaptive law parameters. The coefficients y,; are independent
of Ap and A.. Choose maXie(1, . nj{yci} to satisfy

Ae(8p, Cey 8, Tay To, fm, 8i)

max {)/C,} < (105)
iefl,..., \f)\b {pafs Tq, Tp, l'Ll‘nvgl)
Finally, we arrive at
g _min{)_\m n} 2 . A 2 A 2
V(t — | |X(t 0,t ot
(t) < T+ 20 <| O +n(0, £)” + IIa(-, Ol
+ d(t)* +a(l(r), 6 + &, Ol* + um|md(t)|> <0 (106)

where . = A — maXie1,n{Valv/MAs > 0, and min{i., n} is
related to the convergence rate of the closed loop system

StepZ Boundedness analysis of LIX(0)P dt||n( 013, dtlla( 0113,
and & 2t Ima(6)]: According to (106) obtained in Step 1, we thus have

V(t) < V(0), Vt > 0. One easily gets that |K(t )| . ac, O3,
&G, O3, IX()]?, |mg(t)] are uniformly bounded, and also @(t)
is bounded according to (79). Recalling the invertibility of the
backstepping transformations (37), (38), (50), the boundedness of
the signals ||z(-, t)||, [|[W(-, t)|l, |X(t)| is obtained. Therefore, U(t)
is bounded according to (69). It follows that d(t) is bounded via
(74). Taking the time derivative of [X(t)%, |l&(-, )12, I17(-, )II%,
and |my(t)| along (52)-(56), (78), we obtain
d -
d—|X(t)|2 = 2X"(£)(AmX(t) + BA(O, t) — BRX(t)), (107)
Ellﬁ(-, D17 = (g2(1(6)) + I())d(t)* — g2(0)(0, t)?

I(t)
- (g5(x) — 2ca(x))A(x, t) dx

I(t)
+2 / Ax, t) [D(x; K(£))BK(t)
0

- Ié(t)Dk(t)(x; R(6)X(t) — K()R(x, t) ] dx, (108)

d .
all&(-, O = —~(@(I(£)) — I(E)a(U(e), £} + q1(0)&(0, ¢)?
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Event-triggering mechanism

(102) (103)

» ﬂd >
(105)
}/L‘I

Fig. 2. A determination sequence of all design parameters under the cascaded conditions (97)-(103), (105) in the proposed adaptive event-triggered control system.

)
+ (q,(x) + 2c1(x)@(x, t)*dx

0 I(t)
—2 / ax, ) (x, 0)q1(0)CX(t)dx, (109)
0

d
alma(tn = nmgy(t) — red(t)* + o B(t)

+ k16 (I(t), £)? 4+ k27(0, £)? + k34(0, )%, (110)

where the fact my(t) < 0 has been used in (110). Recalling the
boundedness results proved above and (76), (74), (72), (69), we
obtain the boundedness of 7(I(t), t). We then have that 7(0, t)
is bounded as a result of the transport PDE (55), with recalling

the boundedness of K in (123) in Appendix A. The signal &(0, t)
is bounded as well due to (53), and then &(I(t), t) is bounded
as a result of the transport PDE (54). Therefore, by applying
the Young and Cauchy-Schwarz inequalities to (107)-(110), with
the boundedness of I(t) in Assumption 3, we get that %lx(t)lz,
SNAC 012, Lllé(-, t)]|?, and 4 [mg(t)| are uniformly bounded.

Finally, integrating (106) obtained in Step 1 from 0 to oo, it fol-
lows that [X(£)%, |&(-, )% [IA(-, £)]|1%, and |my(t)| are integrable.
Then using the results obtained in Steps 1 and 2, according to
Barbalat’s Lemma, we have that [X(t)], l&(-, t)I12, |13(-, £)]1, and
|mgy(t)| tend to zeroas t — oco. W

The following theorem establishes that, in the closed-loop sys-
tem, no Zeno phenomenon takes place, namely that limy_, o ty =
400, and the states and the control signal are convergent to zero.
The well-posedness of the event-based closed-loop system can
be studied in a similar manner as in the proof of property 1) of
Theorem 1 in Wang and Krstic (2021).

Theorem 1. For all initial values (z(-, 0), w(-, 0)) € L*(0, L), X(0) €
R, (2(-,0), W(-,0)) € L*0,L), and mg(0) < O, with the design
parameters satisfying (97)-(103), (105), the closed-loop system,
i.e, the plant (1)-(5) with the proposed observer-based adaptive
event-triggered controller (91), which consists of the observer (14)-
(17), the adaptive update law (63), (64), and the ETM (77), (78), has
the following properties:

1) There exits a positive constant Ty, which only depends on the
parameters of the plant and the choices of the design parameters
such that mingso{tk+1 — t} = Tmin.

2) In the closed-loop system the states are asymptotically convergent
to zero in the sense of

Jim (IX(OF + 1zG. 017 + lw(-, )
+ 112G, O1F + 1D, OI1* + Img(t)]) = 0.

3) The adaptive event-triggered control signal is convergent to zero,
ie, lim;_ o Uy(t) = 0.

(111)

Proof. 1) Recalling Lemma 4, property 1) is obtained.

Control force
_—

— x=l(1)

I I
Hydraulic actuator

X()
: Vibration |
| displacement :
: x1(H)=u(0.7) |
|
| .
| Integration : u (,\,f )
|
| Vibration velocity :
| xa()=10.0) Approximated
| 2
|
|

flexible guideway

Integration

Accelerometer

HTH ——x=0

Cage

Fig. 3. Mining cable elevator with viscoelastic guideways.

2) Recalling the asymptotic stability result proved in Lemma 5,
considering the invertibility and continuity of the backstepping
transformations (37), (38), (50), we obtain the asymptotic conver-
gence to zero of ||2(, )12+ | (-, t)I2+ X (t)]* + |ma(t)]. Recalling
Lemma 1 and (18), applying the separation principle, property 2)
is obtained.

3) Recalling (69) and property 2), we have that the continuous-
in-time control signal U(t) is asymptotically convergent to zero.
According to the definition (72) and property 1), then property 3)
is obtained. m

Conditions on all the control parameters (97)-(103), (105) are
cascaded rather than being mutually dependent. A sequence of
determining these parameters is shown in Fig. 2. The choices
of these parameters ensure the existence of a minimal dwell-
time and the asymptotical stability of the closed-loop system. The
optimal choices of these parameters are not studied in this paper.
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7. Application in the flexible-guide mining cable elevator
7.1. Simulation model

The prominent characteristic of a mining cable elevator is
captured as a load-moving cable system, where the control input
and the payload are at the two boundaries of the cable whose
length is time-varying, and its dynamics are

P = T(uw(x, ) + T'(X)ux(x, t) — Cue(x, t), (112)
Meug(0, t) = —keu(0, t) — cque(0, t) + T(0)u(0, t), (113)
— TUE)u(I(t), ) = U(t) (114)

where u(x, t) denotes the lateral vibration displacements along
the cable shown in Fig. 3, and x € [0, [(t)] are the positions
along the cable in a moving coordinate system associated with
the motion [(t), whose origin is located at the cage. The function
T(x) = M.g +xpg is the static tension along the cable and p is the
linear density of the cable. The constant ¢ is the material damping
coefficient of the cable. The values of the physical parameters of
the mining cable elevator tested in the simulation are shown in
Table 1, which are taken from Wang, Pi, and Krstic (2018). The
constants k., c; are the unknown equivalent stiffness and damp-
ing coefficients of the viscoelastic guide. The modeling process
of (112)-(114) refers to Canbolat, Dawson, Rahn, and Nagarkatti
(1998). Through applying the Riemann transformations

T(x)

z(x, t) = ue(x, t) — Tux(x, t), (115)
w(x, t) = ue(x, t) + %ux(x, t), (116)

and defining X(t) = [x:1(t), x2()]" = [u(0, t), u:(0, £)]7 which
physically means the lateral displacement and velocity of the
cage, (112)-(114) is converted into a 2 x 2 coupled transported
PDE-ODE model in the form of (1)-(5) with the following coeffi-
cients:

T —C T’
G0 = Ga(x) = %,m(x):ca(x)zz—;—%, (117)
N
C(x) = ca(x) = 2 + YWIIieY T p1=-—1, (118)
A= 1 0 M. B = 0 Cc=1]0,2
—Mc["i —cd—m} I
(119)

For the lateral vibration model of the mining cable elevator (112)-
(114) with the Riemann transformations (115), (116), the condi-
tion of the controlled boundary in (1)-(5) should have a simple
augmentation, as follows:

w(l(t), t) = —

U(t) + z(I(t), ). (120)

pT(I(t))
The proximal reflection term z(I(t),t) can be canceled at the
drum (see Figure 1 (a) in Wang, Koga, et al. (2018)), so in the
simulation, we consider the controlled boundary as (5), where
the designed control input, based on (1)-(5) with the above
coefficients (117)-(119), should be multiplied by —7”“2(“”) to
convert the input signal computed based on (5) into the control
force at the head sheave in the mining cable elevator, i.e., into the
control signal U(t) in (120). In the practical mining cable elevator,
I(t) is obtained by the product of the radius and the angular
displacement of the rotating drum driving the cable, where the
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Table 1

Physical parameters of the descending mining cable elevator.
Parameters (units) Values
Initial length Ly (m) 300
Final length (m) 2460
Cable linear density p (kg/m) 8.1
Total hoisted mass M. (kg) 15000
Gravitational acceleration g (m/s?) 9.8
Maximum hoisting velocities vmax (m/s) 18
Total hoisting time t(s) 150
Cable material damping coefficient ¢ (N s/m) 0.4

2500 20
115
1750 1 =
= 110 E
= 1000} {1 =
15
3y 40 120 o

.80
Time (s)
Fig. 4. Time-varying domain I(t) and the according velocity I(t).

angular displacement is measured by the angular displacement
sensor at the drum.

In the simulation, the unknown damping and stiffness coeffi-
cients of the flexible guide are set, respectively, as ¢; = 0.4 and
k. = 1000. The target system matrix of the ODE is set as

0 1
Am :< —22 -58 )

The unknown target control parameters kq, k, are sought online
by the adaptive mechanism, to achieve the target system matrix
Apn. The bounds of unknown control parameters ki, k; in the
adaptive estimates are defined as [-50, 0], [-100, 0]. The time-
varying cable length I(t) and its changing rate [(t) are shown in
Fig. 4. The maximum velocity of the moving boundary, i.e., the
maximum hoisting velocity vmax = 18 m/s, satisfies the limit
of the changing rate of the time-varying domain proposed in
Assumption 3. The initial conditions of the plant (1)-(5) are de-
fined as w(x, 0) = 0.2 sin(27wx/Lo), z(x, 0) = 0.4sin(37x/Lo + %),
x2(0) = 0.5w(0, 0) 4+ 0.5z(0, 0), x1(0) = 0.1. The initial value
mg(0) in the ETM is chosen as —0.03.

(121)

7.2. Simulation results

The design parameters in the proposed adaptive event-based
control system are shown in Table 2. According to the system
matrix, the input matrix in (119) and the target system matrix
Ap in (121), we know that the ideal control parameters ki, k;
are —31.3,-78.2 respectively. Fig. 5 shows our adaptive design can
online adjust the control parameters k;(t), ko(t) to approach the
ideal values. It often happens in the adaptive control that even
though the estimates do not exactly arrive at their actual values,
the state convergence is achieved in the closed-loop system,
which can be seen shortly. The proposed adaptive event-based
control input and the continuous-in-time adaptive control input
are shown in Fig. 6. The internal dynamic variable my(t) in the
ETM is shown in Fig. 7. The PDE states used in the control law
are from the observer (14)-(17), and the observer error is shown
in Fig. 8, where we can see that observer errors at the midpoint
of the time-varying spatial domain are convergent to zero after
t =6.4s.
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Table 2

Parameters of the proposed adaptive event-based control system.
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Parameters Values

In adaptive update law

Yer = 0.95, yo» = 0.46, § = 3, 1, = 0.06, Iy = 4, [y = 0.00002

In ETM 6=0118, n =41, Ag=13,0 =05, k1 =k = k3 = 4
g |0 —ky o
5 -20r 1 § o :
BD-31 3= § =7 e e e s
T4 ' Soaf -
2 \ SEERo oo .sSinEeEEEesuTvescoeueseseees g : —(4Y ¢
i —-60r \I’ I,’ = 1 .-8_0.2 E (l(tz) )
S Yo © ' Z(55,1)
D 782, ] : 2
—80F ] -0.3 :
' ' 064s 100 150
0 150 ;
Time [s] Time [s]
Fig. 5. Self-tuned control gains fﬁ, l}z, whose target values are k; = —31.3, k, = Fig. 8. Observer errors at the midpoint of the time-varying spatial domain.
—78.2.
= 05 |
g
)
.5 P - . = =
B 0
&
= —With control
§ -0.5 1 ---Without control
= —Event-based i A
3 -1 ---Continuous-in-time | 0 T 150
" . ime [s
0 50 _ 100 150
Time [s]
Fig. 9. Responses of w (2, ¢).
Fig. 6. Adaptive event-based control input and the continuous-in-time adaptive
control input. . -
—With control 1
0 ---Without control
__—001 Ty =
L:; ]
g
—0.02r 2
, 100 150
Time [s]
003 ] 100 150
Time [s] Fig. 10. Responses of z (2, ).
Fig. 7. Dynamic internal variable my(t) in ETM.
0.1 N
The responses of the PDE states and the ODE state are shown — LN OON oA s
in Figs. 9-12, where the proposed controller can quickly suppress é Or i T = -
to zero the oscillations appearing in the open-loop system. The = SERTE B
fact that oscillation amplitude decreases in the open-loop system 8 —oat v
is due to the fact that material damping of the cable is considered ‘ 8 — With control
in the simulation. Figs. 9 and 10 show that the PDE states at the —-- Without control
midpoint of the time-varying spatial domain are reduced to zero. —0.20 5'0 N (‘)0 150

Figs. 11, 12 show that the responses of the ODE state X(t) =
[x1(t), x2(t)]7, which physically represent the displacement and
velocity of the lateral vibrations of the cage moving along flexible
guideways, are suppressed to zero under the proposed controller.

11

Time [s]

Fig. 11. Responses of x;(t).
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—With control
---Without control

100

150
Time [s]

Fig. 12. Responses of x,(t).

---Without control
-~ PD control
—Proposed control

o L T
s

100 150

Time[s]

Fig. 13. Time evolution of the norm (|Ju,(-, t)||? + ||ux(-, t)||> )% which physically
reflects the vibration energy of the cable modeled by (112)-(114).

Representing the responses of z(x, t), w(x, t) in the original ca-
ble model (112)-(114) using (115), (116) as the norm
(lue (-, O 4+ Nux(-, t)||2)%, which physically represents the vi-
bration energy of the cable, a comparison of the performance of
the proposed controller with the performance of a traditional PD
controller Upg(t) = 2x4(t) + 1.2x,(t), where the PD parameters
are chosen by trial and error over many tests, is shown in Fig. 13.
From the comparison we observe that both controllers reduce the
vibrations compared with the result without control. Even though
the vibration energy under the proposed controller is larger at the
beginning, which is due to the fact that the self-tuned control
gains kq, k, start to search for the target values from bad initial
values of zero (see Fig. 5), the proposed controller reduces the
vibration energy to a much smaller range around zero as time
goes on.

8. Conclusion and future work

We propose an observer-based adaptive event-triggered
boundary control of 2 x 2 coupled hyperbolic PDEs with
spatially-varying coefficients and on a time-varying domain,
whose uncontrolled boundary is coupled by a highly uncertain
ODE. The control parameters can be self-tuned online to adjust
the ODE system matrix with a high uncertainty, to a given target
system matrix in the closed-loop system. The absence of a Zeno
behavior and the asymptotic stability of the closed-loop system
are proved. In numerical simulation, the proposed controller is
applied in a mining cable elevator, which is representative of the
load-moving cable systems, to suppress lateral vibrations during
driving a cage moving along flexible guideways. In future work,
the hydraulic actuator dynamics and external disturbances which
often appear in practice will be incorporated into the control
design. The optimal choices of the design parameters will also be
studied.

12
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Appendix A. Proof of Lemma 2

_The following notation is used: My (I(t), x; K(t))
W Because of Uy = O for t € (tk, tes1), recalling (74),

taking the time derivative along (13)-(17), we obtain

[(Kt) — qa(I(£))) M(L(E), I(t), K(0))2(U(t), t)
(t), 0; K(£))q1(0)2(0, t)

() + Ice ) N(I(E), I(t), K(e)w(l(e), t)

+
+
+ ))B — N(I(t), 0 (t))Qz(0)>ﬁl(0, t)

“E”
(o

K(t)Df((t)(l(t); K(£)) + I(6)D(I(t ); K(¢)) + D(I(E); f<(r))A>X(t)

+
_

) s _ R _ N
+ / ((M(l(r), X K(O)q1(x)) + M(I(t), x; K(£))e1(x)
0
+ N(I(t), x; K(£)es(x) + I )Myey(I(t), x; K(£))

+ R(OMg(I(0), % f<(t))>2(x, £)dx

ey s R _ N
+ / (N(l(r), x; R(0))ea(x) — (N(IE), 2 ROO)T2(0))
0
+ KON (I0), x: R(0)) + B0, x: R(D)ea(0)

2
+ I(E)Nyo(x, (t), k(t))) W(x, t)dx:|

< ho(Zp. & W(L), 1) + 2(I(t), £ 4 (0, £)* 4 2(0, t)*
+ m3(§p7 Cﬂv gl)||2(v t)”z + m3(§p7 {a! gl)”ﬁ)(7 t)”2
+ m3(;p7 ;Ch gl)lx(t)|2]a

t € (ty, tyr1), for some positive Ag, which depends only on the
plant parameters ¢, and design parameters g's (the bounds of all
kernels depend on the plant parameters {,, and the bounds of
I%(t) depend on the bounds of the unknown parameters g;'s in A
and the design parameters g;’s in A, as mentioned in Section 2).
According to (63), (64), we know that

(122)

2 2

k()| < ms(zy. 0 2) (123)
where mj3 is a positive constant dependent only on the plant
parameters ¢, the adaptive law parameters ¢, and the design
parameters g;'s in Ap. (In this paper a constant followed by (-)
denotes that a constant that depends only on the parameters
in the parentheses, as in (123).) Recalling the invertibility of
the backstepping transformations (z, w, X(t)) < (&, 7, X(t)),
inserting (76), then (81) is obtained. The proof is complete.

Appendix B. Proof of Lemma 3

According to (77), events are triggered to guarantee,

d(ty < 6d(t) — my(t). (124)
Inserting (124) into (78), one obtains
mg(t) < —(n + Aa)ma(t) + (A — 0)@(t) — kra(l(t), t)

— (0, £ — k3a(0, t)?

—(n + Aa)mg(t) — kr&(I(t), £)?

— k27(0, t)? — k3@(0,t)>, >0 (125)

with using (82). Hence, by my(0) < 0, we conclude that my(t) <
0. The proof is complete.
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Appendix C. Calculation of (87)

Taking the derivative of (83), using Lemma 2, and inserting
the following inequality

—®(t) <po(Cp, Sar )P(L) + Ap(p)A(IL), 1)
+ 70, £ +d(t)* + &(0, t)?]

which is obtained by taking the derivative of &(t) along (52)-
(56) for all t € [t*, tyyr1] and recalling the boundedness of

(126)

bound on IA<(t) in (123), where the constant 1o(gp, &4, &) > 0
in (126) only depends on the plant parameters ¢p, adaptive law
parameters ¢, and the design parameters g;’s, and where the
constant A,(¢,) > 0 in the same inequality only depends on the
plant parameters ¢,, we get

(2d(t)d(t) + S1ia(t))
0@(t) — 3my(t)

(0D(t) — 3ria(t))

0O(t) — 3mq(t)

I L. .
=0o(0)— %md(t)[ka(d(t) +a(I(t). )" + (0, )

(t)=

+ &(0, t)* + m3(&p, Lo, ENG(-, O + m3(Ep, Lo, EAC, DI

1
+ ms(g, za,g‘f)lxa)lz) +d(t)* + zmd(t)}

1
0o(t) - Imy(r)

— Ap7(0, £)% — apd(t)* — 2,@(0, t)2> - %Thd(l'):|1/f(t).

[9 (—Mo(ip, Cas 8P () — Apa(I(t), £)?

Inserting (78) to rewrite riy(t), recalling (79), applying (84)-(86),
we obtain that

. 1
W(t) 5—%m[<xa +1+ 5)»,1>d(t)2

bo(t) — 1

1
+ Xa(&p. &iIm3(&p, Lay &)P(L) — Enmd(t)]

! _ 1
- m [— <9Mo(§p’ $a, 8i) — 50) (1)

1 1
— <9Ap + E)Ld>d(t)2 + znmd(t):|1/f(t). (127)
Applying, in (127), the following inequalities ——2"™_
pplying, in (127), the following inequalities ~ 50t 1m®
_ 3mg(0) (1) < o0 _ 1 d(t)?
—2mg(t) Toee(n)-Img(t)y —  02(O) T 07 go()-Imgt) T

d(tY + 3 mg(t)— $mg(t) .
700 Tma(® < ¥ (t) + 1, which hold because of my(t) < 0,

then (87) is obtained.
Appendix D. Calculation of (96)

Taking the derivative of (92) along (52)-(55), employing (66),
(67), (76), (78), and applying K(t) = —K(t), we obtain
_ 1
C 14 2() — pmma(t)

%rbe“”(”&(l(t), £y + %(‘b(’(f)) + ()™ OR(Ie), £)?

V(t)

[ —XT()QX(t) + 2XTPBA(0, t)
+

1 ) 1 I(t) R
SO0, 07 ~ 257, f € g (0)i(x, 1)2dx
0

—Tq

I(t) I(t)
: [ €4,/ (R, £dx 4+ 14 / (0P R(x, £dx
0 0
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SO OG0, 0 + 5000300, ¢

)
ST / e~y (x)a(x, t)2dx
2 )
1 o o)
+ irbf e g (x)a(x, t)zdx+rbf c1(x)e"a(x, t)dx
0 0

) ; ;
ra / e i(x, t)(l((t)Dk(t)X(t) + KR(x, t)) dx
0

1)
rbf e &(x, t)J(x, 0)q1(0)CX(t)dx
0
+ pumnmg(t) — Mm)\dd(t)z + Umo D(t)
+ wmkr&(I(8), Y + mia (0, £)* + pmics@(0, t)? ]

1
14 82(t) — pmma(t)

k() [ LK@ + x ( 2X(t)BTPX(t)

I(t)
Ie / e™f(x, £)X(t)B"D(x; f<(t))de>] . (128)
0

Inserting the adaptive laws (63), (64) into (128), recalling
(53), (76), and (79), applying the Young and Cauchy-Schwarz
inequalities, (96) is obtained.
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